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CHAPTER 1. INTRODUCTION 

Inspection systems that provide metrology information for discrete points on 

the surface of an object must use some type of fitting procedure to obtain more 

meaningful dimensional and form information. In this context, we can examine the 

deviations of the surface being measured and neglect for the moment uncertainties 

introduced by the inspection system. 

Consider the idealized geometric boundary shown in Figure 1.1 where the desired 

form feature is a straight line and the profile S is the measured profile which is a con­

volution of the true surface profile and the stylus radius of a coordinate measurement 

machine (CMM). Form tolerances (flatness, straightness, circularity, and cylindricity) 

(ANSI Y14.5M, 1982) specify a "zone" within which the toleranced profile or surface 

must fit. The zone is bounded by two perfect offset profiles or surfaces. We need 

only to specify the offset value and no datum is needed, i.e., the tolerance zone floats 

in space. The forthcoming ASME Y14.5.1M-1993 standard gives the mathematical 

definitions of these geometric tolerances (for details see Walker and Srinivasan, 1993), 

e.g., 

Flatness. Flatness is the condition of a surface having all elements in 

one plane. A flatness tolerance specifies a tolerance zone defined by two 

parallel planes within which the surface must lie. 



www.manaraa.com

2 

Definition: A flatness tolerance specifies that all points of the surface 

must lie in some zone bounded by two parallel planes which are separated 

by the specified tolerance. 

A flatness zone is a volume consisting of all points P satisfying the 

condition 

\f- { P -A) \ < t /2 

where: 

T is the unit direction vector of the parallel planes defining the flatness 

zone; 

is a position vector locating the mid-plane of the flatness zone; 

t  is the size of the flatness zone (the separation of the parallel planes). 

Conformance: A feature conforms to a flatness tolerances if all 

points of the feature lie within some flatness zone as defined above, with 

t = tQ. That is, there exist T and A such that with t = tQ, all points of 

the feature are within the flatness zone. 

Actual value: The actual value of flatness for a surface is the smallest 

flatness tolerance to which the surface will conform. 

The other definitions of form tolerances are analogs of the above. In Figure 

1.1 the profile S is bounded by a zone that we compare with a specified geometric 

tolerance zone, t, (i.e., straightness) from the design specifications. For a discrete 

set of points, we want to determine if S lies within the specified tolerance zone. We 

are faced with the problem of making inferences about the limits of the zone with 

incomplete information on S. The limits of S, 11 and /2, are separated by a distance, 

w, which must be compared with the tolerance zone specification. In practice, the 
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Figure 1.1: Idealized geometric boundary (y = .01 cos(.l — 9 a;)) 

profile S  and the supporting lines { I I  and 12) are unknown because it is infeasible to 

take an infinite number of points on S. Thus, the sampling strategy (location and 

number of points) and sample data analysis become critical issues in the context of 

CMM inspection. 

The profile S is usually referred to as one realization of "spatial random pro­

cesses". Tlie variations occur along the length of the manufactured part. We model 

these variations as nonstationary harmonic processes, which is not without precedent 

(Nayak, 1971; Sayles and Thomas, 1978). The surface profiles can be represented as a 

composite of sine and cosine waves with different amplitudes, phases, and frequencies. 

This harmonic process model is defined by 

K 
Z { s )  =  c o s ( x  k x -  + y  k y -  + (1.1) 

i=l 

where s = { x , y ) ,  and there are K < o o  wave-vectors (kxj^^ky^), {C^} are constants, 

and the {<!>{}•, {i = 1,K), are independent random variables which are fixed for a 

specific surface. The resulting surface profiles are bandlimited functions, i.e., they can 
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be represented by a finite limit (truncated) inverse Fourier transform (Jerri, 1977). 

This research reviews and evaluates the current sampling strategies and sample 

data analysis for form error evaluation. Without considering the correlation of the 

sample points, we model the probability distributions for the deviations of the surface 

profiles and derive the theoretical distribution of form error estimation for random 

sampling. Further, we consider the spatial dependence between the sample points 

by using spatial statistics, especially the universal kriging method, to predict form 

errors. Spline approximation provides optimal theoretical solutions to the estimation 

of functions from limited data (Powell, 1981). We show that Shannon sampling func­

tions (infinite degree spline interpolation functions) are the optimal approximation 

of the measured surface profiles from limited sample points. Finally, we use 3D mea­

surement data from actual machined surfaces of common manufacturing processes 

(Stout et al., 1990) to evaluate form error estimation methods. The performances of 

universal kriging and a Shannon sampling method on the estimation of form errors 

are also evaluated for these machined surfaces. 

The contribution of this research is to provide a scientific basis for the effect 

of surface profile, sampling methods, and sample size on the result of form error 

estimation. This helps to explain flaws in current CMM sampling practice, which 

can lead to significant errors in form evaluation. We also provide an optimal spline 

interpolation method for reconstructing surfaces from limited sample points. The 

performances of this method and kriging are also compared to provide a guideline for 

limited sample data analysis. 

The organization of this dissertation is as follows: 

In Chapter 2 the current CMM sampling strategy and sample data analysis are 
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reviewed. Chapter 3 derives the theoretical distribution of form errors and shows the 

limitations of discrete sampling. Chapter 4 considers spatial statistics for form error 

estimation. Chapter 5 discusses the optimal spline interpolation methods. Chapter 

6 describes the validation of our models and performance comparisons of an optimal 

spline method and kriging. Chapter 7 presents conclusions and recommendations for 

further research in related topics. 
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CHAPTER 2. LITERATURE REVIEW 

Sample data analysis 

Suppose we take 19 points uniformly distributed with respect to the x  axis. 

Using standard Monte Carlo techniques, we obtain the points shown in Table 2.1 

and Figure 2.1. Researchers have investigated a number of different methods for 

analyzing sample points such as these. The least squares method is implemented 

in most CMM software. Murthy and Abdin (1980) and Shunmugam (1986, 1987a, 

1987b, 1990, 1991) have already demonstrated that estimates of VJ obtained from the 

least squares method do not agree with the definition of form errors. For example, 

using our points in Table 2.1, the least squares method (shown in Figure 2.2) gives us 

a value for w of 0.0283, which is greater than the true value of 0.02 by 41.5%. Hence, 

many attempts have been made to derive the minimum values of form errors. The 

two main approaches to solve this problem have been curve fitting and computational 

geometry. 

Curve fitting approach 

Many fitting criteria can be expressed as special cases of a general criterion called 

Lp-notm estimation. The objective is to find the fit parameters that minimize the 
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Table 2.1: Nineteen sample points (random sampling) 

orders of 
y value 

Normal distance to the 
Least squares line 

Normal distance to the 
Mini-max line 

0.285092 

0.105460 

3.499036 

3.393897 

4.624379 

2.800454 

9.516238 

6.350012 

2.904454 

8.725649 

1.489229 

9.454947 

5.553856 

9.503680 

2.691309 

0.007508 
9.089049 

6.554264 

4.592405 

-0.007802 

0.006606 

0.009997 

0.005646 

-0.007784 

0.009996 

-0.007497 

0.008769 

0.006158 

-0.009941 

0.007407 

-0.009853 

0.009284 

-0.008196 

0.005311 

0.009995 

0.009998 

-0.006954 

-0.009246 

^(5) 

^(12) 

®(18) 
=^(10) 

^(6) 
®(17) 

x(7) 

^(14) 

(̂11) 
^(1) 

®(13) 

^(2) 

^(15) 

^(4) 

^(9) 

®(16) 

®(19) 

^(8) 

-0.01433560* 

-0.00014186 

0.00729671 

0.00282031 

-0.00914207 

0.00646250 

-0.00302047 

0.00946911 

0.00274854 

-0.00640742 

0.00230958 

-0.00544958 

0.00903452 

-0.00373445 

0.00164732 

0.00313031 

0.01396500* 

-0.00601026 

-0.01064220 

-0.00782896 

0.00657907 

0.00996947* 

0.00561849 

-0.00781173 

0.00996859 

-0.00752561 

0.00874096 

0.00613057 

-0.00996947* 

0.00737983 

-0.00988160 

0.00925610 

-0.00822461 

0.00528361 

0.00996809 

0.00996947* 

-0.00698208 

-0.00927373 
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Figure 2.1: Measured sample points (random sampling) 

Lp norm (Hopp, 1993) 

Lp = 
1/p 

(2.1) 

where is the residual and the sum is over n  data points. After the fit parameters 

are found, the form error is expressed as 

^ |''max| "f l^'rninl' (2.2) 

The residuals for various geometry form deviations are described as follows (Menq et 

al., 1990, and Shunmugam, 1986, 1987a, 1987b, 1990, 1991). 

1. Straightness 
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0.03 

0 . 0 2  

0 . 0 1  •  

-0.01 

-0.02 

-0.03 

19 sample points 
.006874-.001193 x 

.020841235-.001193 
-.007461885-.001193 x 

.01 * cos(.l-9*x) 

Figure 2.2: Least square fit 

The measurement data are given by and let the required feature be a 

straight line of the form 

y = 771 + 7;2 a;, 

then the normal deviation is expressed as 

. _ Vi - (^1 + V2 ̂ i) 

+ n l  

r i  =  

(2.3) 

(2.4) 

and the linear deviation is 

"•» = Vi -  (ll + '!2 ̂ i)- (2.5) 

2. Flatness 
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The measurement data are given by {x^,y^, z^} and let the required feature be 

a plane of the form 

z = TJi + 7)2 x + r]^y, (2.6) 

then the normal deviation is expressed as 

_ z j  - ( r i i  + V 2 X i  +  7?3 V i )  

and the linear deviation is 

(2.7) 

' 1  =  ̂ i - i n + V i ^ i  +  V S V i ) -  ( 2 - 8 )  

3. Circularity 

The measurement data are given by {x^,y^} or and let the required 

feature be a circle of the form 

[ x  -  77i)2 +  { y -  J/2)^ = ns, (2.9) 

where the center {t/j , 772} and radius 773 have to be determined, then the normal 

deviation is expressed as 

h = - vs- (2.10) 

4. Cylindricity 

The measurement data are given by {r^,6i,z^} or The direction 

vector of the center axis {r]i,r]2,1.) and its base point (773,774,0), of the assess­

ment cylinder and the radius 775 have to be determined. The normal deviation 

is given by 

r,- = { x j  -  7 ? 3  -  z j T i i ) 2  +  ( 2 : ^ - 7 7 2  -  y j  +  7 7 4 ) ^  +  [ ( y ^  -  -  n ) ^ 2 ]  „ 
^2 I ^2 I 1 ^5 T l f  +  T ) ^  +  l  

(2.11) 
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For a cylindrical feature aligned properly with z-axis, the deviation can be 

expressed in the linear form 

n = Vi - [»?5 + ivi + V2 H) + ivz + VA H) (2-12) 

Most metrologists only concentrate on the Gaussian (1*2) and the Tschebycheff 

») methodologies (Hocken et al., 1993). 

• L2"®stimation 

The least squares method minimizes 

L2 = Y.f'i (2-13) 

and the normal least squares method minimizes 

(2-M) 

The solutions of (2.14) are discussed in Murthy and Abdin (1980). For straight-

ness, there are two perpendicular lines satisfying the normal least squares fit. 

The slopes of these two lines are 

^ - a x y  +  < J 4 s + i .  ^  - a x y - ^ a l y + i ^  ^ 

and the intercepts are 

^ ^ ̂  (2.16) 

[JVEi?-(Ea:i)2l-[JVl;!,?-(j;si)2] 
where = iNZxiy'-E^'illyi] ' <""= <>' 

them is correct for the best fit. For flatness and circularity, the solution equa­

tions are complex and cannot be solved easily. They use trial and error proce­

dures to solve this problem. 
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• Lcxj-estimation 

The limit of Lp as p goes to infinity is the largest magnitude residual, so the 

Loo problem is to minimize the maximum magnitude residual, i.e., 

min max |r^-|. (2.17) 

Shunmugam (1986, 1987a, 1987b, 1990), Dhanish and Shunmugam (1991), and 

later Caskey et al. (1992) all try to develop various search procedures to solve 

this problem. Gonin and Money (1989) investigate the current available al­

gorithms and FORTRAN programs for solving this type of problem. We use 

the Anderson-Watson-Osborne algorithm and program suggested by Gonin and 

Money to solve (2.17). 

Computational geometry approach 

The width of a set of measurement points P in two dimensions is the minimum 

distance between parallel lines of support of P, which defines the straightness error. 

In three dimensions, it is the minimum distance between parallel planes of support, 

which defines the flatness error. Houle and Toussaint (1988) present algorithms to 

calculate the width of a set of points in two and three dimensions, i.e., the minimum 

width of the convex hull. Etesami and Qiao (1989) and Traband et al. (1989) use 

the same approach to evaluate the straightness and flatness error. For the circular 

features, the determination of two concentric circles with minimum distance enclosing 

the measurement points requires the application of Voronoi diagrams, e.g., Etesami 

and Qiao (1989) and Roy and Zhang (1992) present this approach to evaluate circu­

larity. 
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Houle and Toussaint (1988) also bring up an open problem concerning the re­

lated area of minimax approximation. The width of a set they presented solves the 

problem of finding a minimax approximating line of a set of points in the plane as 

well as that of finding the minimax approximating plane of a set of points in three 

dimensions. That is, they have proved that the minimum width of the convex hull of 

the measurement points is equal to the distance to the minimax-approximating-line 

(or plane). However, these only solve the straightness and flatness errors. For other 

general type of geometric errors, e.g., finding the minimax approximating line of a set 

of points in three dimensions, the computational geometry approach is still an open 

research problem. Caskey et al. (1992) reach the same conclusion that the "minimum 

zone is the same as mini-max (Loo)"- That is, the value of w after solving (2.17) will 

have the same value as the width of a set determined by the minimum width of its 

convex hull. 

Application 

We implement a set of programs, both Lp-norm estimation and width of convex 

hull, to calculate the form errors (straightness, flatness, circularity, and cylindricity). 

Appendix A lists these programs and their algorithms. Appendix B presents the 

computation results of published data sets and gives the comparisons of the published 

results in the literature. 

Questions remain to be answered 

For our nineteen sample points example, we obtain an estimate of w of 0.019939 

by either solving (2.17) or calculating the width of its convex hull, which is shown in 
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Figure 2.3: Minimax method 

Figure 2.3. Therefore, we might conclude that this is a good sampling strategy and 

analysis, because we are very close to the true value. 

However, from Figures 1.1 to 2.3, we recognize that w is only an estimate of the 

true value w. As Menq, et al. (1990) argue that "cases may occur when all sampled 

deviations are found to be within tolerance while some non-sampled deviations are in 

fact out of tolerance. Therefore, using CMM sampling for inspection does not meet 

the principle of minimum zone method." Based on the geometric tolerance definition, 

the minimum zone principle is valid only under the assumption that the entire profile 

is examined. 

Further, Hopp (1993) considers the general metric p of Lp-norm and reports 

that the bias and sensitivity errors of the fit will vary with p. As p increases, the 
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sensitivity of the fit to point measurement error increases, but the bias with respect 

to the fit prescribed by tolerance theory decreases. Therefore, it is very difficult 

to develop general guidelines for the proper choice of fitting objective (p value) for 

a practical coordinate measuring system. Least-squares fitting is widely used and 

debated, with many claiming that extremal fitting is better because it "conforms" to 

tolerance theory. An alternative fitting objective is to minimize combined uncertainty 

in the result. How to make the best choice is not at all clear (Hopp, 1993). Thus, 

the quest ions remain,  how good is  the est imate? How wil l  different  values  for  the p  

metric of the Lp-norm estimation affect this estimate? 

Sampling strategies 

Sampling strategies involve two issues: determination of locations and number 

of sample points needed to inspect a workpiece. Locations of sample points can be 

generated by a number of different sampling techniques such as uniform sampling, 

random sampling (the example we used in previous section), stratified random sam­

pling, Hammersley sampling, etc. (Hocken et al., 1993, Caskey et al., 1991, 1992, 

and Woo et al., 1993). Hocken, et al. (1993) point out that uniform sampling is 

the most practical for users since it is much easier to program a measuring machine 

for equal intervals in angle or space than it is to use any other sampling techniques. 

Caskey, et al. (1992) prefer stratified random sampling and argue that it is more 

robust to feature waviness based on their simulation results. Even with this method, 

their results gave poor performance in estimation of form errors. They found that a 

large number of samples is necessary to obtain a low variance of the estimated form 

error based on a particular surface. The relationship between feature waviness and 
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the sampling methods is still unknown. 

The number of required measurement points has very important implications on 

inspection speed and data analysis. Ideally, we would like an inspection plan that 

requires the fewest measurements yet provides sufficient information for quality as­

surance. However, the number of required measurement points for obtaining effective 

quality assurance is unknown, and its determination also still remains unaddressed 

(Menq et al., 1990). 

We begin our discussion with a probabilistic view of form deviations. Using 

known surfaces, we show how random sampling methods and sample size affect form 

error estimation. We conclude with a comparison of analysis techniques and a dis­

cussion of the role of the metric p in Lp-norm estimation. We will also discuss the 

other fitting procedures, such as kriging and spline interpolation, which consider the 

spatial correlations between points, whether they have better estimate of form errors 

or not. 
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CHAPTER 3. STATISTICAL DISTRIBUTIONS FOR SURFACE 

PROFILES AND ITS IMPACT ON SAMPLING RESULTS 

Definition 1: Lp mean profile level: Lp mean profile level defines a profile that 

minimizes (2.1). For n —> cx) and all measurement points (2D or 3D) within the 

domain of inspection, the mean profile level is defined as the true Lp mean profile 

level, which is unknown to us. For n inspection points, the mean profile level is 

defined as the measured or estimated Lp mean profile level. 

Definition 2: Minimum zone mean profile level: the L QQ mean profile level is 

defined as the minimum zone mean profile level. As we discussed in the previous 

chapter, the Loo mean profile level minimizes the maximum residual, which is the 

width of the minimum zone and is the form error as defined in the standard. The 

statistical distribution we will discuss is distributed along this minimum zone {Loo) 

mean profile level. 

Definition 3: Detectability of true form error. Detectability is defined as the 

ratio of the estimated form error for n sample points to the true form error. For 

example, for n = 3, we estimate w = 0.012 for w = 0.02. Therefore, the 

detectability is 60% (0.012/0.02) to detect the true form error with n = 3. We will 

show next that the variance of w is monotonically decreasing with n and thus the 

mean is enough to define the detectability. 
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Deviation distribution from Loo mean profile level 

The periodic surface profile shown in Figure 1.1 can be represented by the general 

sine wave function 

y{x)  =  A Cos{bx  + c), (3.1) 

where, A is the amplitude, b  is the frequency and c is the phase angle. Now suppose 

we perform random sampling (uniformly) along x axis on the interval (OjXq), that 

is, X has a uniform probability density function (pdf) f{x) given by 

1 
f {x )  =  

XQ 0 < x < a : o  

0 otherwise .  

We would like to determine the pdf of y .  For one value of y ,  two possible values 

of X will match it within one cycle. There are a total of cycles within x G (0, xq). 

Thus, the inverse function y~^{x) is a real ^^-valued function of y, where is 

forced to be an integer and all of the values have equal probability. Hence, 

Pr{y<y(^<y- \ -Ay}  

_  x^b  Pr{x<x{y)<x+Ax)  

_  Pr{x<xiy )<x+Ax}  Ax  
1" Sx  Ay  

= 

~ \dyldx\ ^ " 

where 

1^1 = AhSin{bx  + C) = Ab\ l \  — Cos^(bx  4- c) = b\JAp-  — y^ .  

Thus, 

\ y \  <  A  
f { y )  =  TT-^^—•>'2 2/" (3.2) 

I2/I > 



www.manaraa.com

19 

8 -

S 

•0.01 0.0 

y 

—I 
0.02 

Figure 3.1: f {y )  =  oi'2-yi^)0.5 l^/l < 0.01; 0 for ly| > 0.01 

This probabiHty density function for profile S is shown in Figure 3.1. 

From (3.2) and Figure 3.1 we would like to emphasize the following points. 

1. This distribution is quite different from the normal distribution. The tails of 

the distribution play an important role in evaluating the form errors as we will 

show in the next section. 

2. The pdf in (3.2) is not a function of frequency. Thus, detectability using random 

sampling is the same under different frequencies with this type of periodic 

profile. 

3. Since the domain of this pdf is the amplitude A,  the distribution is the same 

with different amplitudes of y{x). Thus, the detectability using random sam­

pling is  the same irrespect ive of  different  ampli tudes of  y{x) .  



www.manaraa.com

20 

The minimum zone mean profile levels are difficult to obtain and the derivation 

of the sine wave distribution in (3.2) becomes more cumbersome when we consider 

more complicated prof i les ,  e .g . ,  prof i le  B:  y{x)  = 0.25(5m 3x +  cos  Vlx  +  s in  .5x  +  

cos 5x) for X e (0,50), which is shown in Figure 3.2. An alternative approach is to 

approximate the minimum zone mean profile levels and the statistical distribution 

numerically by generating a sequence of points for fixed increments of x, running 

a mini-max optimization program to find the parameters, and creating a frequency 

histogram from the residual values. For example, we generate points for the interval 

0.01 between points along x axis (a; G [0,50]). We have 5001 points which are used 

to approximate the continuous profile B. Then, we obtain the L2 (least squares) 

mean profile level as —0.002868a: + 0.071354 and the minimum zone (minimax) mean 

profile level as —0.00001® + 0.047791, for x 6 [0,50], which are shown in Figure 3.3. 

Thus, the deviations from^the minimum zone (Loo) mean profile level are no longer 

y{x) = 0. Figure 3.4 shows the height (normal distances to the minimum zone mean 

profile level) distribution function for profile B. 

From these two examples of surface profiles, it is clear that the normal distribu­

tion assumption to estimate the distribution of CMM measured surface profile that 

result from manufacturing processes is not always applicable. Sayles and Thomas 

(1978) gave strong support of this argument. 

With a surface of a given finite area, if the heights are measured suffi­

ciently closely together then an arbitrarily large sample can be obtained. 

Its extreme values, however, would not be very large and will therefore be 

a function not of the sample size, cis for a discrete normal variate, but of 

the area over which the sample was taken. This is because in the physical 
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world we do not expect things to vary by vast amounts in short periods 

or distances. Large changes in surface height on Gaussian surfaces are 

possible but they tend to occur over large distances. This argument sug­

gests that in physical situations a Gaussian stationary process is in fact 

a contradiction in terms, (p. 432) 

Stout et al. (1990) has shown the height distributions for various machined surfaces. 

Many distributions shown in that book cannot be modeled as normal distributions. 

We use the beta distribution, which is not without precedent (He, 1991), to esti­

mate the height distribution function, i.e., the form deviation from the Loo mean 

profile level, for the profiles measured by CMM. By changing the parameters of the 

beta distribution, we can control its shape to match that of a specific process. The 

probability density function for a generalized beta distribution is given by 

f { X , a J , a , b )  \  b - a j  

a > 0,13 > 0,a < X <6, 

where, jB(q!,/3) = jT — Z)^~^dZ, 

X  =  random variate (form deviation), a , b  = lower and upper limits of the distribu­

tion, and cx,P = shape exponents. Outside the interval [a, 6] the probability density 

is zero. 

We can represent the density function of (3.2) as a beta distribution with a = 

= 0.5, a = —A, and 6 = A. It can be seen that the true form (straightness) error for 

profile B is 1.828712. The histogram shown in Figure 3.4 can be approximated by a 

beta distribution with a = 2.68287, /3 = 2.97903, a = —0.914587, and b = 0.914485, 

using He's algorithm (1991). 
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Figure 3.2: Profile B: y{x)  = 0.25(sm 3x+cos  12x+s in  .5x+cos  5x) for x  6 (0,50) 
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Figure 3.3: L2 and LQO mean profile levels for profile B 
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Figure 3.4: Height distribution function for profile B: 
y{x) = 0.25(stn 3x + cos 12x + sin .5x + cos 5x) for x G (0,50) 

Estimated form error and order statistics 

Let the minimum zone mean profile level as y(x)  =  0 and y \ i y2 i - - - i yn  be the 

sample points taken from this inspected profile and 2/^1^)2/(2)' '"'^(n) points 

sorted in ascending order of magnitude such that 

f ( l )  ̂  2/(2)  ^  ^  y{n)-

If the minimum zone mean profile level is known, then the samples and 

determine the estimated form error a^ ~ y{\y Since we take random samples 

(following a uniform distribution) from the inspected profile along the x axis (and 

if the samples are far enough from each other), we can treat ¥^,¥2, •••,Yn as i.i.d. 

continuous random variables with common beta distribution with parameters (a, 0, 



www.manaraa.com

24 

a, b) .  Let R be the difference (the estimated form error) given by then 

the density function of R (Kendall and Stuart, 1977) for the general case is 

5r^(r) = n(n-l)^^{F(2/(i) + r)-F(?/(i))}"~2 /(y(i))/(y(i)+r)rfj/(j^. (3.3) 

Its expected value is 

/

OO 
{1 _ Fiy)"  - [1 - F{y) ] ' ' ] i y  (3.4) 

-OO 

and the mth moment about the mean is given by 

EiR - EiR))"" = m(m - 1) f°° ^{l _ - (1 _ Fj)" + (F„ - Fj)"} 
J—oo J—oo 

{R  -  - (m - 1){-E(i2)}"^ for m > 2. (3.5) 

From the definition of variance we obtain 

V a r { R )  =  E { R  -  E { R ) f  =  

2  - P S - ( I -  n f  +  ( F n  -  -  m f -  ( 3 . 6 )  

Using these statistics of the form deviation estimate, we can calculate the de-

tectability with respect to n for given parameters of any distribution. Figure 3.5(a)(b) 

are the results calculated from (3.4) and (3.6) for different a, /? parameters of beta 

distributions with a = 0 and 6=1. From these figures we would like to illustrate the 

following points. 

1. These figures assume that the minimum zone mean profile level is known, and 

the sample points are i.i.d. beta distribution when we perform random sam­

pling. 
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2. As sample size increases, detectability increases and the standard deviation 

decreases. 

3. The detectability for the normal distribution iV(l/2,1/6), which is close to a 

unit beta distribution with a — ^ = i and is the most common form deviation 

distribution assumption for most researchers, is only 62% when we take 20 

sample points. Note that, in practice, typically less than 10 points are used to 

assess form errors. Therefore, a small sample size has a very high probability 

of accepting a bad part if the measured zone is the same order of magnitude as 

the tolerance specification. The scenario is even worse when the form deviation 

follows a beta distribution with parameters (4,4) or higher kurtosis. The mean 

of estimated form error is only 74% of the true value when we take 100 points 

(82% for the normal distribution, which is close to beta distribution with a = 

^ = 4). 

Since the true minimum zone mean profile level is unknown to us, the practice 

is to take an arbitrary number of sample points to estimate it and then obtain w. 

Next ,  we wil l  use  s imulat ion techniques to  take sample points  f rom profi le  S and B 

and use least squares and mini-max methods to estimate w for different number of 

sample points which will be compared with the theoretical values. 

Simulation results 

Varying n from 3 to 20, we generate 30 sets of random points from profile S:  

y{x) = 0.5 Cos{—9x + 0.1) for each n and then use the least square method and 

mini-max method to estimate w. The estimated form error yr^\ —y(i) values (given 



www.manaraa.com

26 

0.9 

0 . £  

0.7 

0 . 6  

0.5 

0.4 

0.3 

0 . 2  

0.3 

0.25 

0 . 2  

0.15 

0.1 

0.05 

beta(.1,  .1)  
beta( .5,  .5)  

beta(l , l )  
beta(2,2) 
beta(3,3) 
beta(4,4) 

normal(1/2,1/6) 

10 15 20 
Number of  points inspected 

(a) 

25 30 

1 
beta(.5, .5)  

betad,  1) 
beta(2,2) 
beta(3,3) 
beta(4,4) 

10 15 20 
NiJinber of  points inspected 

25 30 

(b) 

Figure 3.5: (a) Mean (b) Standard deviation of range from beta distributions 
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a known minimum zone profile level) are also calculated. Figure 3.6 shows the mean 

values and standard deviations of w and the values calculated by (3.4) and (3.6) using 

a beta distribution with a = —0.01, b — 0.01 and a = ^ = 0.5. For profile 5, Figure 

3.7 shows the mean values and standard deviations of w and the values calculated 

by (3.4) and (3.6) using a beta distribution with a = —0.914587, 6 = 0.914485, 

a = 2.68287, and = 2.97903. 

Based on these simulation results, we make the following observations: 

1. The diiference between the mean values calculated from (3.4) and the mean 

estimate form errors by random sampling from both profiles is getting smaller 

as the sample size increases. We attribute the bias to the estimate of the 

minimum zone mean profile level. Small sample sizes exhibit large biases. 

2. The mean estimated form error by the mini-max method is smaller than the 

mean of R calculated from Eq. 3.4 for both profiles. This can result in accepting 

a part which is actually out of tolerance. Therefore, the type II error (the 

probability of accepting a bad part) is higher when using the mini-max method. 

3. Hopp (1993) suggests that an optimal p  value can be found for the parameters 

of a substitute geometry (i.e., the minimum zone mean profile level), though the 

way to make the best choice of p is not clear. The mean values ~ ^(1) 

calculated are based on the known minimum zone mean profile level and agree 

quite well with the mean values calculated from (3.4). We observe that even 

with good estimates of the minimum zone mean profile level, the detectability 

is still quite low (e.g., profile B) due to the sampling limitation. 
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In order to validate the above observations for a wide variety of surfaces, we 

conducted another simulation study. We assume z{x) = 0.5 as the minimum zone 

mean profile level, the true straightness error as 1, and the inspection length as 10. 

Points on the surface are i.i.d. having a beta distribution with parameters (1,1), 

(1,2), ..., (1,5), (2,1), ..., (2,5), ..., (5,5). Five hundred samples are generated for 

each distribution with 5 and 50 measurement points for each sample. Mini-max and 

normal least-squares methods were used to calculate the straightness error for each 

sample and the ~ ^(1) calculated. 

Table 3.1 and 3.2 list the mean and standard deviation of 500 samples of 5 

and 50 measurement points for each sample with various beta distributions. The 

theoretical mean/s.d.(standard deviation) columns in these tables are calculated from 

(3.4) and (3.6). The next three columns list the mean and standard deviation for 

and estimated form errors by using normal least square and mini-max 

methods. Figure 3.8 plots the mean values in the theoretical mean/sd column of 

Table 3.1. From this figure we observe most of the mean sample ranges are less than 

50% of the true straightness error and they are decreasing as the beta parameters 

{a,/3) are increasing. Figures 3.9(a) and 3.10(a) show mean and standard deviation 

values of the estimated form errors calculated from — z^^y normal least-squares 

and minimax methods for 500 samples with 5 and 50 measurement points/sample 

respectively. The abscissas of these two figures represent the distribution number and 

the corresponding beta distributions are shown in Table 3.1 and 3.2. Figures 3.9(b) 

and 3.10(b) also show the theoretical density function calculated from (3.3) and the 

estimated form error histograms for ~ ̂ (1)' mini-max, and normal least-squares 

methods for beta distribution (a,;3) = (2,2). 
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The mean estimated form errors calculated from mini-max consistently have the 

smallest value. The difference is larger for smaller sample sizes which agrees with our 

previous observation. The normal least-squares method has a higher probability of 

over-estimating the form error (greater than 1 in this case) especially when a < 1 and 

^ < 1. The histogram of estimated form error by using normal least squares (Figure 

3.10(b)) shows the estimated errors are greater than 1 for some samples. With the 

relatively large standard deviation for all cases, we cannot differentiate statistically 

between the mini-max or normal least-squares estimates. 

The inspection length was 10 in the above simulation study. Equations (2.15) 

and (2.16), the slopes and intercepts of normal least square solution, show that they 

are  not  x-axis  scale- invariant ,  i .e . ,  the  form error  of  (a:^ ,  y^)  is  different  f rom (aa;^ ,  y{ ) ,  

where a > 0 is the scale. Figure 3.11 also shows the mini-max method is not x-axis 

scale-invariant. Thus, we conduct another simulation study with an inspection length 

of 1000 while holding other conditions constant. Table 3.3 and 3.4 show the results. 

The results are almost identical to the results for an inspection length of 10. From 

these simulation studies, we observe that the detectability is strongly influenced by 

the sample size and the surface characteristic. The p metric selection does not seem 

to affect the detectability significantly. 
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Table 3.1: Mean and standard deviation for 500 samples, 5 points/sample, inspec­
tion length=10 

Distribution 
Number 

1 

Beta para. 
a 

1 

10 

11 

12 

13 

14 

15 

/3 
1 

1 2 

1 3 

1 4 

1 5 

2 2 

2 3 

2 4 

2 5 

3 3 

3 4 

3 5 

4 4 

4 5 

5 5 

Theoretical 500 samples, 5 points/sample 
mean/s.d. y(n)'~y{l) ^2 ^oo 

0.666667 0.6828517 0.5856701 0.5545228 
0.178174 0.1736909 0.1959300 0.1839747 
0.539683 0.5306998 0.4569302 0.4352397 
0.158999 0.1842183 0.1880529 0.1798774 
0.436813 0.4310106 0.3718554 0.3534554 
0.165936 0.1620427 0.1610743 0.1536121 
0.364002 0.3696611 0.3126132 0.2970302 
0.150774 0.1448102 0.1388524 0.1317659 
0.311147 0.3153624 0.2692456 0.2568470 
0.136396 0.1356017 0.1329954 0.1275964 
0.521479 0.5244642 0.4485602 0.4262693 
0.158999 0.1603416 0.1622875 0.1537526 
0.465182 0.4734989 0.4057428 0.3836184 
0.150519 0.1475860 0.1518935 0.1440550 
0.412264 0.4073168 0.3508049 0.3325445 
0.141496 0.1377190 0.1386368 0.1310568 
0.367707 0.3584276 0.3038960 0.2893923 
0.132217 0.1251407 0.1251233 0.1190757 
0.441251 0.4404719 0.3763416 0.3576119 
0.142519 0.1432202 0.1477351 0.1405761 
0.407992 0.4145075 0.3521781 0.3344445 
0.135361 0.1335398 0.1399267 0.1324680 
0.375367 0.3835522 0.3334500 0.3158700 
0.128223 0.1335189 0.1340655 0.1271485 
0.389125 0.3848140 0.3256564 0.3095435 
0.129743 0.1315119 0.1320908 0.1257106 
0.366591 0.3586658 0.3053390 0.2900945 
0.124091 0.1236935 0.1289402 0.1228553 
0.351875 0.3518370 0.3030063 0.2870403 
0.119702 0.1168656 0.1130808 0.1062241 
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Table 3.2: Mean and standard deviation for 500 samples, 50 points/sample, inspec­
tion length=10 

Distribution Beta para. Theoretical 
Number a /3 mean/s.d. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

1 1 

1 2 

1 3 

1 4 

1 5 

2 2 

2 3 

2 4 

2 5 

3 3 

3 4 

3 5 

4 4 

4 5 

5 5 

0.960784 
0.0269179 
0.865698 

0.0648395 
0.752055 

0.0870115 
0.655221 

0.0945637 
0.577135 

0.0951972 
0.85155 

0.0552998 
0.78708 

0.0661313 
0.717354 

0.0741036 
0.65352 

0.077789 
0.759056 

0.0649189 
0.714093 

0.0680278 
0.66669 

0.0704798 
0.688286 

0.0674018 
0.655064 

0.0679683 
0.633213 
0.067193 

500 samples, 

^ H - ^ ( i )  
0.9627672 

0.02547632 
0.8700323 

0.06315896 
0.7521097 

0.08982415 
0.6633374 

0.09597787 
0.5785034 

0.09716932 
0.8582640 

0.05381828 
0.7866040 

0.06667817 
0.7131574 

0.07549051 
0.6500484 

0.07668453 
0.7635570 

0.06410962 
0.7092233 

0.06971229 
0.6659320 

0.06886642 
0.6841785 

0.07032887 
0.6551808 

0.06779035 
0.6337910 

0.06719966 

50 points/sample 

h 
0.9896147 

0.05224548 
0.8845990 

0.07114728 
0.7632886 

0.09360024 
0.6699312 

0.09629015 
0.5834723 

0.09985643 
0.8599053 

0.06145103 
0.7871082 

0.07113217 
0.7130789 

0.07544360 
0.6490527 

0.07813645 
0.7587376 

0.06997796 
0.7076002 

0.07141196 
0.6615880 

0.06958961 
0.6784570 

0.07170390 
0.6490667 

0.07012162 
0.6300958 

0.06765132 

Loo 

0.9484121 
0.03133454 

0.8556719 
0.06404775 

0.7394696 
0.09046787 

0.6531555 
0.09541790 

0.5690922 
0.09675174 

0.8322046 
0.05699484 

0.7614175 
0.06672352 

0.6914989 
0.07280379 

0.6290505 
0.07470217 

0.7333470 
0.06470722 

0.6843604 
0.06827329 

0.6406171 
0.06646528 

0.6572393 
0.06787789 

0.6264009 
0.06447985 

0.6072051 
0.06521175 
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Table 3.3: Mean and standard deviation for 500 samples, 5 points/sample, inspec­
tion length=1000 

Distribution 
Number 

1 

Beta para. 
a  

1 

10 

11 

12 

13 

14 

15 

1 

500 samples, 50 points/sample 

y { n ) - y { i )  

1 2 

1 3 

1 4 

1 5 

2 2 

2 3 

2 4 

2 5 

3 3 

3 4 

3 5 

4 4 

4 5 

5 5 

0.6655831 
0.1743385 
0.5437005 
0.1819644 
0.4354061 
0.1661413 
0.3537382 
0.1509290 
0.3177277 
0.1382845 
0.5244169 
0.1599947 
0.4678887 
0.1478950 
0.4127547 
0.1390793 
0.3657815 
0.1255167 
0.4417505 
0.1507178 
0.4012125 
0.1418767 
0.3835971 
0.1297131 
0.3879500 
0.1260315 
0.3652429 
0.1280277 
0.3548828 
0.1213273 

h 
0.5786854 
0.1975065 
0.4708807 
0.1844359 
0.3755207 
0.1621799 
0.3065658 
0.1499126 
0.2769228 
0.1324432 
0.4456181 
0.1680792 
0.4094903 
0.1541772 
0.3579712 
0.1450233 
0.3134359 
0.1255399 
0.3745434 
0.1532916 
0.3410176 
0.1433937 
0.3262388 
0.1323661 
0.3305028 
0.1280590 
0.3152385 
0.1281423 
0.3050805 
0.1231452 

Loo 

0.5474520 
0.1862461 
0.4471396 
0.1754473 
0.3575147 
0.1559837 
0.2919180 
0.1446375 
0.2632968 
0.1264102 
0.4230248 
0.1600093 
0.3881842 
0.1452543 
0.3417480 
0.1389728 
0.2982966 
0.1199531 
0.3555039 
0.1462195 
0.3245860 
0.1371549 
0.3082678 
0.1242599 
0.3132364 
0.1208380 
0.2990205 
0.1215442 
0.2908209 
0.1176504 
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Table 3.4; Mean and standard deviation for 500 samples, 50 points/sample, inspec­
tion length=1000 

Distribution Beta para. 500 samples, 
Number a ^ y{n)~y{l) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

1 1 0.9606377 
0.02678697 

1 2 0.8647368 
0.06640976 

1 3 0.7575122 
0.08175854 

1 4 0.6524396 
0.09661906 

1 5 0.5754476 
0.09441874 

2 2 0.8526653 
0.05491866 

2 3 0.7902669 
0.06711923 

2 4 0.7182296 
0.07423409 

2 5 0.6537800 
0.07270493 

3 3 0.7596573 
0.06635577 

3 4 0.7142692 
0.07119628 

3 5 0.6659668 
0.07302258 

4 4 0.6853173 
0.07195569 

4 5 0.6571373 
0.06971710 

5 5 0.6291794 
0.06556892 

50 points/sample 

h 
0.9869183 

0.05241601 
0.8769632 

0.07241678 
0.7656219 

0.08317159 
0.6578176 

0.09784351 
0.5802976 

0.09505307 
0.8549791 

0.06071470 
0.7914479 

0.06866440 
0.7182900 

0.07568630 
0.6514293 

0.07497354 
0.7579078 

0.06865339 
0.7114468 

0.07270031 
0.6621650 

0.07445586 
0.6798982 

0.07189938 
0.6518089 

0.07018052 
0.6244845 

0.06700868 

Loo 

0.9461884 
0.03054228 

0.8492211 
0.06735622 

0.7446620 
0.08069857 

0.6419507 
0.09640397 

0.5658817 
0.09422631 

0.8264509 
0.05604649 

0.7668523 
0.06509654 

0.6953536 
0.07350819 

0.6326223 
0.07229929 

0.7319796 
0.06646436 

0.6871443 
0.06859631 

0.6410727 
0.07095007 

0.6579420 
0.06915820 

0.6302268 
0.06583591 

0.6035707 
0.06248217 
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f  \  

Figure 3.8: Mean of range from beta distribution for 5 measurement points 
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CM d 

Distribution number 

(a) 

(b) 

Figure 3.9: (a) Mean and standard deviation for 500 samples, 5 points/sample 
(l,2,3=mean, a,b,c=standard deviation of ~~ ^(1)' ^2' 

Loo methods, respectively) (b) Estimated form errors histogram for 
beta(2,2) from 500 samples, 5 points/sample 
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Distribution number 

(a) 

(b) 

Figure 3.10: (a) Mean and standard deviation for 500 samples, 50 points/sample 
(l,2,3=mean, a,b,c=standard deviation of ^>2, and 

Loo methods, respectively) (b) Estimated form errors histogram for 
beta(2,2) from 500 samples, 50 points/sample 
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Figure 3.11: The LQO mean profile levels and convex hulls for the straightness data 
set 2 in Appendix B and x-axis scale 100000. The LQO mean profiles 
are y = 2.456333 + 0.228667x, y = 2.456333 + 0.000023 * x and form 
errors are 0.857858, 0.88, respectively. 
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CHAPTER 4. SPATIAL STATISTICS FOR FORM ERROR 

ESTIMATION 

In the previous discussion, we used the individual sample points to calculate the 

form error without applying any curve or surface fitting procedures to reconstruct the 

continuous profiles. Also, for the detectability graph, shown in Figure 3.5, we assumed 

that the measurement value at each point is independent of all other points. Thus, 

the question arises, is it necessary to consider the spatial dependence between sample 

points and apply surface fitting procedures to reconstruct the continuous profile from 

the discrete measurement information? More importantly, will the consideration of 

spatial dependence yield a better estimate of the true form errors? 

Spatial prediction 

Let the points on the surface we want to inspect be denoted by 

{Z(s) :seD} 

where s is a spatial location vector in R (two-dimensional reference datum plane). 

The index set D gives the extent of the region of the inspected surface. Data 

{Z{si),...,Z{sn)} are measured at known locations sj,...,sn. 
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Spatial dependence 

In the previous chapter we characterized the surface by assuming that Z{si),Z{sn) 

are independent of each other. However, the values of Z{s) at locations in close prox­

imity tend to be related to each other. The covariance function, 

cov(Z(s^-)7 Z{sj)) = C { s i , s j )  for all s^, s j  e  D ,  (4.1) 

summarizes the relationship between the values Z ( s ^ )  and Z ( s j )  with locations 

and Sj. If C(s^ — sj) is a function only of || — sj || (i.e., distance between the 

points), then C(-) is called isotropic. A random function Z(-) having covariance 

function (4.1) and 

E { Z { s ) )  = f i  for all s 6 (4.2) 

is called second-order (or weak or wide-sense) stationary. 

The variogram is an important parameter of geostatistics which also describes 

the relationship between values at two locations. The variogram 

var(Z(s^) — Z { s j ) )  =  27(3^- —  s j )  for all s^-, s j  G D  (4.3) 

defines the variance of the difference of Z-values at separate locations. The function 

7(-) is called a semivariogram. When the process is second-order stationary, the 

covariance function and the variogram are related by 

7(h) = C'(O) - C(h). 

Note that C(0) = var(Z(s)) is the variance of ^(s) at any location s. Cressie (1993) 

points out that the variogram exists even for some processes that are not second-order 

stationary, and hence is more general than the covariance function. The majority 
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of machined surfaces are typically anisotropic (i.e., dependence between Z(s) and 

Z(s + h) is a function of both the magnitude and the direction of h so that the 

variogram is no longer purely a function of the distance between 2 spatial locations) 

because they exhibit a pronounced lay or directional character. Sayles and Thomas 

(1977 and 1979) also point out the limitations of the covariance function and use the 

structure function 

S(h) = £{[Z(s)-Z{s + h)l2} 

to model the spatial dependence in their surface roughness studies. 

Assuming that a process is stationary with respect to the mean (i.e., (4.2) holds), 

then Var(Z(s + h) — 2^(s)) = E(Z(s + h) — Z(s))^ and the variogram is estimated by 

2W) = J- E (2(si)-Z(s))2. (4.4) 

where the summation is over all distinct pairs of locations in the sample that are 

separated by distance d, and is the total number of pairs separated by d. Other 

robust estimations of variogram are also described in Cressie (1993). For irregu­

larly spaced data, pairs of data with approximately the same distance apart may 

be grouped together. Finally, a smooth curve (e.g., linear, exponential, spherical, 

rational quadratic model) is fitted to the variogram estimates to obtain values of the 

variogram for all distances. 

Kriging 

Kriging is a stochastic processes prediction theory used to produce contour maps 

of surfaces derived from regularly or irregularly scattered points in a space. This 

theory incorporates the covariance function (or variogram) in the prediction process. 
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If we assume a process is intrinsic-stationary (i.e., (4.2) holds) and 

Var(Z(si) — Z{s2)) = 27(31 — Sz) for all Si,S2 € D, 

then ordinary kriging can be used to predict the process. If the process is isotropic, 

then estimator (4.4) can be used. However, if the process is anisotropic, the variogram 

estimators are not only a function of distance but also a function of direction, i.e., 

7(h,0). Cressie (1993) gives an important note about the variogram estimators. If 

H in (4.2) is not constant but in fact depends on the location s, then the variogram 

estimators are estimating 

27(h)+ (B(Z(s + h))-£(Z{s)))2. 

Thus, if the process is nonstationary, i.e., (4.2) does not hold, we can decompose 

the process into two structures 

Z { s )  =  //(s) + £(s) 

where E { Z { s ) )  = //(s) and e(s) is a zero-mean intrinsically stationary stochastic 

process with var(£(s -f h) — e(s)) = var(Z(s -}- h) — ^(s)) = 27(h). The large-

scale variation /x(s) and small-scale variation e(s) are modeled as deterministic and 

stochastic processes. Examples of trend surfaces, used in kriging are 

^(s) = a c(x) -i- r { y ) ,  s = (x, y ) '  (4.5) 

where a  is the overall trend, c is a column effect, and r is a row effect 

/^(s) = 53 s = {x,yy, (4.6) 
u+v<p 

where integer p  is the order of the trend surface. 
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Expression (4.5) is the basis of median-polish kriging and (4.6) is the basis of 

universal kriging (Cressie, 1993). After the trend surface, //(s), is estimated and 

removed, the residuals, £(s), are treated as stationary and a variogram can be fit­

ted. Finally, the estimated residuals are combined with the trend surface to obtain 

estimates of the actual surface. 

Venables and Ripley (1994) provide a software package in Splus (Becker, 1988) 

to implement universal kriging. The minimum mean square error unbiased predictor 

Z{x) is given by Ripley (1981) as 

^(SQ) = + y^Hso)- (4.7) 

The computation procedure is summarized as follows. 

1. Form K  =  [C(sj,sj)] 

2. Find L such that LL^ = K where LL^ is the Cholesky decomposition of K 

and L is lower triangular. 

/l(si) • • /p(si) Z(si) 

3. Form F  =  1 and Zj^ = i 

/l(si) • f p i ^ N )  _ ^(s^v) 

where / is polynomial function for the trend surface and P is the number of 

coefficients P = {p+ l)(p -|- 2)/2 where p is the order of the trend surface. 

1 — 1 ^ 4. Solve L Zj^ = L by least squares for /3. 

6. Form = [2(8;) - /{s;)^,?] 

6. Find y  such that L { L ^ y )  
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7. Predict Z{SQ) by /(so)^;S + y^fc(so), where fc(so) = [C(so,s^-)] and 

v a r [ Z { s Q )  -  Z(so)] = C(so,so)- || e ||2 + || g ||2 

where L e  = fc(so), g  = /(sg) — { L ~ ^ F ) ^ e ,  and R is the orthogonal 

r e d u c t i o n  o f  L ~ ^ F .  

We will not consider the extrapolation of the fitted surface which is outside the 

c o n v e x  h u l l ,  C H ^  f o r m e d  b y  t h e  s a m p l e  p o i n t s  i n  X  —  Y  p l a n e ,  i . e . ,  Z ( s )  w i t h  s  €  C H  

only. The detailed procedure to calculate the flatness error by using universal kriging 

is described as follows. 

1. Take random samples ),..., Z(sjy) from the inspected surface. 

A 

2. Use Venables and Ripley's programs to calculate Z { s )  and cr^ within D .  Note 

that the grid size specified in their program in X and Y directions to obtain 

the surface coordinates will affect the approximation of the flatness errors of 

the predicted surface. That means the flatness error calculated for a predicted 

surface is less or equal to its true flatness error. 

3. Obtain the 2D convex hull only considering X and Y coordinates of the sample 

points. QHULL (Barber and Huhdanpaa, 1994) provides a program to find 2D 

and 3D convex hull for the given points. 

4. Remove the fitted surface outside the convex hull of X — Y plane. 

5. Calculate the flatness error of the predicted surface (X-Y coordinates) inside 

the convex hull, CH. 
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so 100 150 

Figure 4.1: Sample points (100) taken from the bored surface (bocll) 

Random points from a bored surface 

This section illustrates the use of universal kriging to calculate the flatness error 

for the manufactured surface (bocll) from a boring process (Stout et al., 1990). The 

region D for this bored surface is (x,y) G ([0,163], [0,163]) which is shown in Figure 

C.l. The surface data are taken from a uniform rectangular grid giving a total of 

26,896 points (164 x 164). The true flatness error is 41.164028 for these 26,896 points 

which is unknown to the inspector. First we take 100 sample points from this surface 

by using a random sampling method. The scatter plot of these points in X-Y plane is 

shown in Figure 4.1. If we only consider the individual points, the flatness form error 

as calculated in the previous chapter is 29.306071. Next we use universal kriging to 

find a predicted surface for these points. 
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The variogram must satisfy a property called conditional negative-definiteness, 

i.e., 
m m 

Z) SOj27(sj  -  Sj) < 0, 
i=l j=l  

for any finite number of spatial locations {s^ : i = l,...,m} and real numbers {a^- : 

i = satisfying — 0. The variogram estimators, e.g., ^{d), cannot 

be used for kriging because they are not necessarily conditionally negative-definite 

which can result in embarrassing negative mean-squared errors of prediction. It is 

suggested that a variogram model be selected from among a parametric family of 

variograms which best fits the data (Cressie, 1993). Figure 4 shows correlation plots 

for the data and the residuals from first and second order surfaces, together with 

covariance functions fitted by eye (the fitting of correlation (variogram) function is a 

subjective process). The covariance functions^ used are the exponential model 

C(/i,ae) = e-|Wl/"e (4.10) 

and wave model 

^ _ sin(|| h II /aw)  
C{h,aw)  — aw • (4.11) 

The parameters, ae and aw, must be estimated for each model. If 7(h) —> CQ > 0 as 

h —> 0, then CQ is called the nugget effect which is caused by measurement error. Since 

^The corresponding variogram models are the exponential model 

•y{h,ae ,be)  = fee |^1 - (4.8) 

and wave model 

sin(|| h II /awY 
'Y{H,AW,BW) — BW 1 — aw 

l |h | |  

The parameters, (ag, be) and (wa, wj^) must be estimated for each model. 

(4.9) 
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we consider the measurement error to be negligible, the nugget effect is not included 

in these covariance functions. That is, the correlation is 1.0 when the distance is 0.0 

which will result in the krigged surfaces going through those measurement points. 

Introducing a trend surface makes little difference to these correlograms. Figure 4.3 

and 4.4 show the predicted surfaces and the prediction standard errors for these two 

models fitted in Figure 4. As can be seen from the two surfaces, the choice between 

different covariance models (exponential and wave models) makes a big difference in 

prediction. 

Although the predicted surfaces are continuous, we use a 55 x 55 sample grid 

within the region D to represent this predicted surface. Since we do not consider 

the extrapolation of the predicted surface, we find the convex hull for the sample 

points in region D which is shown in Figure 4.5. Only the grids inside the convex 

hull are calculated by the program to determine the flatness error. The flatness error 

is 25.544803 for Figure 4.3 (exponential model) if we only calculate the predicted 

surface within the convex hull region, which is smaller than 29.306071 obtained by 

using individual points only. Because we use a rectangular grid to represent the 

predicted surface and calculate the flatness error, the results are biased low because 

we may miss the minimum and maximum points. Figure 4.4 gives a large flatness 

error of 72.275202 which is much larger than the true error 41.164028 calculated from 

all 26,896 points. 

Discussion 

Detrending the data is an important issue in kriging. Universal kriging is limited 

to polynomial trend surfaces. Cressie (1993) presents median-polish kriging which 
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provides a more flexible and statistically resistant method of spatial prediction than 

universal kriging. Another more serious problem is the choice of a variogram model 

(covariance function) which can make a big difference in prediction. We see from 

the previous example that incorrectly fitting the wave model results in an overshoot 

for predicted surfaces. Also, the variogram fitting should use only up to half the 

maximum possible lag and then only using lags for which > 30 (Cressie, 1993). 

Thus, the empirical variogram fitted from the sample data usually needs a large 

number of samples. It is also important to have a good fit for the variogram at small 

distances between data points. In sampled data analysis, nothing can be said about 

the variogram at lag distances smaller than min{ll Sj — Sj ||: 1 < i < j < N}. For a 

small number of sample points, this poses a significant problem. 

After performing universal kriging on a number of surfaces, we found the fol­

lowing phenomenon. The variogram determines whether the predicted surface falls 

inside or outside the 3-D convex hull of the data points. If the slope of the variogram 

approaches zero as the distance approaches zero, kriging will return values which 

may be outside the 3-D convex hull. If the variogram has a slope which is sufficiently 

greater than zero when the distance is zero, the resulting interpolated value will lie 

within the 3-D convex hull. Therefore, the commonly adapted exponential model 

(the spatial dependence getting smaller as the distance increases) will always result 

in a predicted surface within the 3-D convex hull. This is an unfavorable situation 

since this provides no additional information to standard interpolation. Based on 

the large number of points required and difficulty in identifying the correct empirical 

variogram model (covariance function) from small number of samples, there appears 

to be no significant advantage in applying the kriging approach to determine the form 
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Figure 4.2: The variograms and correlograms. (a) Data, (b) Residuals from first or­
der surface, (c) Residuals from quadratic surface. The fitted covariances 
are exponential model with ag = 8 and wave model with aw = 5. 
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Figure 4.2: (Continued) 
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Figure 4.3: Predicted surface (a), (b) and standard error of the prediction error (c) 
for exponential model with og = 8. 
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Figure 4.3; (Continued) 
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Figure 4.4: Predicted surface (a), (b) and standard error of the prediction error (c) 
for wave model with aw = 5. 
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Figure 4.4: (Continued) 
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Figure 4.5; The convex hull, CH 
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CHAPTER 5. UNIFORM SAMPLING AND OPTIMAL 

INTERPOLATION 

Uniform sampling 

The only sampling method discussed to this point is uniform random sampling. 

Ripley (1981) evaluated the performance of uniform random sampling, stratified ran­

dom sampling, and uniform (systematic) sampling on the estimation of the mean 

value within region D. He calculated variance of the error of mean value estimation, 

A'^var[5I Z{si)IN — Z(s)rfs/area of £>], and found that if low frequencies are dom­

inant (corresponding to strong local positive correlation), both stratified random and 

systematic sampling should do well relative to uniform random sampling. He further 

concluded that uniform (systematic) sampling should be the best with smaller error 

variance unless the process has strong periodicity with a wavelength corresponding 

to the basic sampling interval along either axis or with wavelength along a diagonal. 

In this chapter we confine our discussion to uniform sampling strategies and present 

an optimal interpolation method for surface reconstruction from a small number of 

discrete sample points. The performance of uniform sampling and optimal interpo­

lation, along with universal kriging, for flatness error estimation will be investigated 

in the next chapter. 
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Interpolation methods 

Many interpolation methods exist in the literature. Watson (1992) extensively 

reviewed the existing interpolation methods. He classifies these methods into five 

categories; 

1. Distance-based methods. These methods assume that each datum has local in­

fluence that diminishes with distance and becomes negligible beyond a limiting 

radius. 

2. Fitted function methods. Some examples include Lagrange interpolation, col­

location, minimum curvature splines, kriging, and relaxation surfaces. 

3. Triangle-based methods. For example, Akima's (1978) method uses a fifth-

degree polynomial interpolation function in x and y defined in each triangular 

cell. 

4. Rectangle-based methods. These methods use rectangular grids for sample 

data, for example, bilinear, Hermite, Bezier, B-spline, and tension patches, 

Taylor interpolation, and Fourier surfaces. 

5. Neighborhood-based methods. These methods are closely related to distance-

weighted methods. 

Among these methods, kriging is synonymous with "optimum prediction" or 

"optimally predicting" (p. 119, Cressie, 1993) in the stochastic prediction content, 

which we already discussed in the previous chapter. Another method, spline inter­

polation, is also considered to be an optimal theoretical solution to the estimation 
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of functions from limited data (Powell, 1981) in approximation theory or numerical 

methods. In the following presentation, we show that the Shannon sampling func­

tions are the optimal interpolation for surface reconstruction from a limited set of 

sample points. 

Shannon sampling theory 

An important family of mathematical techniques used in communication engi­

neering and information theory are based on Shannon sampling theory. We can treat 

the surface profiles as signals in a time domain where distance represents time. A 

finite-energy signal, z(s), is said to be band-limited if its amplitude spectrum (its 

Fourier transform) vanishes outside an interval of the form (—W), where W is 

called the bandwidth of the signal and s £ (one-dimensional reference datum 

line), i.e.. 

where i  = and Z satisfies lZ(w)|^ do; < oo. Since Z { o j )  is zero for Iw] > W ,  

we can replicate it to form a periodic function in the frequency domain with period 

21V. This periodic function can be expressed as a Fourier series (Marks, 1991), i.e., 

f  E  \ u \ < W  
Z{uj) = •! N=-oo (5.1) 

[ 0, la;l > VK, 

where the Fourier coefficients are 

=- I -Z 
^  2 W J - W ^  ^  2 W  \ 2 W j  
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Substituting Cjy into (5.1) and performing an inverse transform gives the sampling 

theorem series, 

If the surface signals (profiles) are band-limited functions, this sampling theorem 

states that it is possible to recover the intervening values with full accuracy (Marks, 

1991). In other words, the sample set can be fully equivalent to the complete set of 

signal values. The minimum sampling rate (i.e., number of samples per unit distance) 

is equal to two samples per period of the highest frequency component of the signal. 

If W is the signal's bandwidth (the highest frequency component), then the signal 

z(s) can be reconstructed from the samples by (5.2). 

Equation (5.2) is called the cardinal series of Shannon sampling. This theorem 

was extended to n variables as follows (Zayed, 1993). Let ^(s) be a function of n real 

variables, where s e = {xi,x2, ...iXn} , whose n-dimensional Fourier integral 

exists and is identically zero outside an n-dimensional rectangle and is symmetrical 

about the origin; i.e., Z{ui,u2,..-,i0n) = 0, jwj^l > lWj^|, k = l,2,...,n. Then, 

the n dimensional signal can be recovered from the samples by 

sin(Vrix^ — m^Tr) SMJWNXN — "^n^r) , .  

Wjar i—mjTr  ""  WNXN — MNTR 

where is the sample number for dimension k .  Marks (1991) and Zayed (1993) 

give detailed historical background and extensions to this theorem. 

(5.2) 

•N-MN 
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B-spline interpolation 

The spline function is known as an interpolation function which is useful in con­

structing a smooth function from a given data sequence. B-spline interpolations are 

piecewise polynomials and have several advantages over other polynomial fits. As 

mentioned before, they also provide optimal solutions to the estimation of functions 

from limited data. However, the use of B-spline representations has had limited ap­

plication in the signal processing field. The main reason for this lack of acceptance 

is because the conventional approach to B-spline interpolation or approximation is 

computationally expensive involving explicit matrix inversions and multiplications 

(Unser, 1993). This is also the reason that the simpler algorithm, cubic spline inter­

polation, instead of higher order splines is implemented in most computer software 

packages. The following derivation gives the B-spline interpolation as a linear com­

bination of the sample points. Therefore, B-spline interpolation can be performed 

in real-time, synchronized to the successively given sampling points as required in a 

signal processing environment. From this derivation, we can relate B-spline interpo­

lation of a general degree to Shannon sampling theory. 

Let the sample point sequence on the space axis be {s«}^_QQ(sn = nh,n  = 

0, ±1, ±2,...), then the B-spline interpolation function determined by the sample 

points z(sn), n — 0, ±1,±2,... can be represented as (Kamada, et al., 1991) 

oo 
2(s )=  12  ( f>[s]^{s-nh) .  (5.4) 

n=—oo 

The spline sampling function is invariant to the translation by h,  i.e., 

n = 0,  ±1, ±2,. . . ,  
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and it is given by 

oo 
« W =  E  n  =  0 , ± l , ± 2 , ,  

/=—CX) 

where 

(5.5) 

mi 

and 

p=0 

{s  -  a)^  

p\{m — 1)! 

(s — a)"^ s  > a 

0, s <= a 

(5.6) is (m — 2)-tinies continuously difFerentiable, 

rw = hp=0.  ±1. d=2, . . . .  

and 

(6.6) 

I  m—1 I 

q=-

[a;J is the maximum integer not exceeding x .  

If we rewrite the Shannon sampling series (5.2) as an interpolation function with 

the sample points,= 0, ±1, ±2,..., as its coefficients, then (5.2) becomes 

^sin[M^(s-s;^)] oo 

The function 
^ ^ ^ _ sin[H^(s-3^)] 

(5.7) 

(5.8) 

is called a sampling function or ideal (sine) interpolation function (Unser, 1993), 

which is shown in Figure 5.1 (W = 2,Sj^ = 0). Unser, et al. (1993) showed that 
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Figure 5.1: Ideal sine interpolation function 

as the order m of the spline sampling function (5.5) approaches infinity, 

converges to (5.8), the ideal sine interpolation functions, i.e., 

limm->c» ^[s]JJ^(s) —> %(«)• (5.9) 

Thus, the Shannon sampling function is equivalent to an infinite order B-spline in­

terpolation function. This infinite order B-spline interpolation function has an im­

portant meaning in the approximation of bandlimited functions which is discussed in 

the optimal interpolation section. Since we only use a small number of sample points 

to approximate the surface profile, the errors associated with this approximation are 

discussed as follows. 
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Undersampling 

The cardinal series of Shannon sampling requires an infinite number of sam­

ples. If a signal has finite energy, it must asymptotically approach zero at i = ±00.  

Therefore, there is always an interval of duration T outside of which the samples 

are negUgibly small. If we sample over this interval at the Nyquist rate, 2W, then 

a total of Sj^ = 2WT samples are needed to characterize the signal (Marks, 1991). 

The choice of T is dependent by the truncation error one can tolerate. Thus, the 

knowledge of the frequency bound determines the minimum rate at which the signal 

needs to be sampled in order to reconstruct it completely. However, when we ap­

ply this theorem to the CMM context, we typically do not have knowledge a priori 

about the frequency information of a manufactured surface. Also, we typically take 

a relatively small number of sample points. This is described as an undersampling 

situation. Therefore, we commit two types of errors when we apply this theorem to 

the analysis of CMM measurement points, namely, truncation error and aliasing error 

(Marks, 1991). Truncation error occurs when only a limited number of samples are 

measured instead of the S'j< number of samples needed. Aliasing error is the result 

of using a smaller bandlimit B {B < VK), so that, 

where zjg(s) is the interpolated profile by using smaller bandlimit B. 

If we look at the surface plots in Appendix C, we notice that in these surfaces the 

high frequency component is associated with low amplitude and the low frequency 

component is associated with high amplitude. This phenomenon has been observed 

in other experimental evidence (Sayles and Thomas, 1978). These low frequency 

SA = z{s) - ZQ{S) = z{s) - • 
7V=—00 
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components with high amplitudes play an important role in the determination of 

form errors. Thus, the high frequency component is not as significant in terms of 

form error estimation. Therefore, the aliasing error is not as severe as the truncation 

error. The following theorem provides optimal theoretical solutions with a minimized 

error bound for the estimation of functions from small number of sample points. 

Optimal interpolation 

Powell (1981) formulated the optimal interpolation problem as follows. The 

sample points 2(3^), n = 1,2, ...,m of a function z in 6] are given, where 

^(fc+l)|-Q, ^ ggj. (k+1) differentiable continuous functions that are defined on 

the interval [a, 6] of the real line. If it is known that max^<;g<;jl2:(^'^^)(s)l is not 

very large, and if we want to estimate z{^), where ^ is any point of [a, 6], then one 

may make an approximation of the form 

m 
« Y, wAH) 

i=l 

where the multipliers {w^ : i = 1,2, are such that the approximation is exact 

when 2 is in a space of all real polynomials of degree at most k. In this case the 

Peano kernel theorem shows that there is a real number c, that is independent of z, 

such that the bound 

TFL 
K O -  Z )  < c  m a X o < 3 < j , l # + ^ ) ( s ) l ,  z  G  c ( ^ + l ) [ a , 6 ] ,  ( 5 . 1 0 )  

i=\ 

is satisfied. Thus, the optimal interpolation problem is to find a minimum value for 

c. Let s{^) be the optimal estimate 

m 
5(0 = I] u;i(0^(si), a<^<b, (5.11) 

i=l 
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of 2:(0. Powell proved that the optimal multipliers ^ 2,m} are unique 

for each ^ and the approximation is a B-spline of degree k  that has ( m  —  k — l )  knots 

whose positions are independent of z. Because the optimal interpolation procedure 

can be applied for all values of ^ in [a, 6], the function (5.11) can be regarded as an 

approximation to the function {^^(s) : a < s < 6}. 

Since the bandlimited functions are infinite-times continuously difFerentiable, 

this optimal interpolation theorem tells us the best approximation is a spline with 

"infinite" order. We have shown that the sampling function of B-spline interpolation 

with infinite order converge to the Shannon sampling functions, i.e., (5.9). Thus, we 

conclude that the optimal interpolation for limited sampling points from bandlimited 

signals is a Shannon sampling function, i.e., (5.8). Figure 5.2 shows some examples 

of these interpolations. 
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SX 

(a) 

Figure 5.2: Cardinal series of Shannon Sampling (a) 15 sample points on a cross 
section of end milled surface, (b) 20 sample points on a cross section of 
bored surface, (c) 15 sample points on a cross section of shaped surface. 
Solid line represents the interpolated profile; dashed line represents the 
true surface profile (164 points). 
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(c) 

Figure 5.2: (Continued) 
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CHAPTER 6. CASE STUDIES 

The surface data used in this chapter are from the Atlas of Machined Surfaces 

(Stout, et al., 1990). We would like to thank Dr. Sullivan, P.J. for sending us these 

data. The 3-D logging system used to obtain this surface data is based on a modified 

Rank Taylor Hobson (RTH) Talysurf 5 surface measuring instrument incorporating 

a linear translation stage. The logged area for each surface were square with sides 

measuring 1.304 mm. The grid spacing on both axes was 8//m, giving a total of 26,896 

(164x 164) data points for each sample. The material used in all machining processes 

was a free cutting mild steel. Appendix C shows perspective plots of five surface data. 

These five typical surfaces come from common manufacturing processes, namely, end 

milling (eml), grinding (sgl), fly cut (ftl), boring (bocll), and shaping (shlc). Each 

manufacturing process produces a surface with its own characteristic topography. 

We use these five typical manufactured surfaces to compare the performance of 

different methods in evaluating the flatness errors under the uniform sampling situ­

ation. The methods are single points (straight line interpolation), universal kriging, 

and Shannon sampling series, i.e., (5.3) with n = 2. The derived random sampling 

results (described in Chapter 3) also provided a reference for the performance of these 

methods. 
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Band-limited surface profiles 

In the previous chapter, we conjectured that the measured manufactured surface 

profiles were band-limited signals without any evidence. Two-dimensional spectral 

analysis provides a comprehensive description of both the structure and scales of 

pattern in a spatial sampling data set (Renshaw and Ford, 1983). We performed this 

technique on these five surfaces in order to determine if they are bandlimited sig­

nals. We used the two-dimensional Fast Fourier Transform program in the MATLAB 

(Etter, 1993) software package and obtained spectral plots for these five surfaces, 

which are shown in Appendix D. From these spectral plots, we see that the spectrum 

falls to zero within a finite range in both x and y axes for all of the five surfaces 

and the directions of travel of the waves can be seen clearly in the plots. Thus, we 

have demonstrated that the surface profiles are composed of a limited number of fre­

quency components and show a significant pronounced lay and directional character 

of typical manufactured surfaces. These results concur with our previous conjecture. 

Random sampling 

The minimum zone mean profile (which is a plane when we consider the flatness 

error) is calculated from total of 26,896 points for each surface. The histograms of 

the deviations from minimum zone mean profile are shown in Figure 6.2. Table 6.1 

shows the parameters of beta distribution for these deviations and the (true) flatness 

error for each surface. The mean and standard deviation of flatness errors estimation 

for a given number of sample points on each surface are calculated by (3.4) and (3.6). 

They are shown in Figure 6.6 with symbol "o" and "x" respectively. 
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Table 6.1: The parameters of beta distribution and flatness errors 

Surface a b a Flatness error 
bocll -20.5886 20.812 1.09043 3.03299 41.164028 
eml -9.10802 8.65788 5.04083 3.75953 17.300614 
ftl -3.86613 3.9746 4.09118 4.15834 7.68158 
sgl -1.95263 1.967854 1.52657 6.89763 4.402485 
shlc -8.01422 8.00488 2.0202 2.6777 15.983605 

Universal kriging 

As we discussed in Chapter 4, the empirical correlogram (variogram) is hard 

to identify and fit when we have small number of sampling points. If we take 1000 

random sampling points from these five surfaces and draw the correlograms, Figure 

6.3 show there are obvious wave correlation patterns between spatial locations for 

surface bocll, eml, and shlc. Table 6.2 lists the parameters of exponential and wave 

models obtained by fitting the correlation functions by eye to these surfaces. In 

contrast to these clear correlation patterns drawn from large number of samples, the 

correlation patterns are impossible to identify for a small number of sample points, 

e.g., Figure 6.4 shows the correlograms of 100 and 25 uniform sampling points taken 

from bocll surface. The points shown in the correlogram plots are n^>6 pairs for a 

given distance d which is more relaxed than the recommended > 30. Thus, we use 

the models listed in Table 6.2 as a priori correlation functions for universal kriging 

in this comparative study. 
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Table 6.2: The parameters of exponential and wave models 

Surface oe (exponential model) ajjD (wave model) 
bocll 7.0 5.5 
eml 5.0 4.4 
ftl 10.5 N/A 
sgl 2.5 N/A 
shlc 5.0 5.0 

Shannon sampling 

We use (5.3) with n = 2 as the interpolation function to approximate the five 

surfaces from a limited number of sampling points. Three samples of rectangular 

uniform sampling from different regions on the surface with 25, 49, and 100 points 

are taken from each surface respectively. The Nyquist frequency having a wavelength 

equal to two times the distance between two adjacent sample points is the highest 

frequency we can detect from the samples. For sample 1 of 25 points, the Nyquist 

frequency (VFj and W2) is 27r/(2*30) = tt/SO which is shown in Figure 6.1 (where 30 

is the distance). Table 6.3 shows the x-y coordinates of these samples and Wi, W2 

for the formula (5.3). The Shannon sampling series (5.3) and universal kriging with 

the a priori correlation functions are used to approximate the real surfaces. The 

reconstructed surfaces are then discretized and the flatness errors are calculated from 

these discretized points. Figure 6.5 shows an example of the reconstructed surfaces 

by Shannon sampling series and universal kriging from 100 sample points on bocll 

surface. Figure 6.6 shows the overall results of flatness errors estimation by straight 

line interpolation, Shannon sampling series, universal kriging, and random sampling 

for the same set of 100 points. The results shown for universal kriging are based on 

wave models for bocll, eml, shlc, and exponential models for ftl, sgl surface. 
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Table 6.3: Samples for the comparative study 

Number Number of Coordinates of Bonding Box 
of points points for sa ,mple lower left corner upper right corner 
/sample each xy axis # coordinate coordinate 

1 (30,30) (150,150) 7r/30 
25 5 2 (20,20) (140,140) 7r/30 

3 (15,15) (159,159) 7r/36 
1 (3,3) (159,159) 7r/26 

49 7 2 (6,6) (156,156) 7r/25 
3 (9,9) (153,153) 7r/24 
1 (1,1) (163,163) tt/IB 

100 10 2 (10,10) (163,163) 7r/17 
3 (5,5) (158,158) 7r/17 

Summary 

Based on this comparative study, we make the following observations: 

1. From Figure 6.5, we see the performances of Shannon sampling series and uni­

versal kriging (with a priori correlation function) are quite similar. As we 

mentioned before, both methods are considered as "optimal" in stochastic pre­

diction and for bandlimited functions approximation. Thus, we conjecture if 

the a priori correlation function can model the spatial dependence perfectly 

(the fitted models shown in Table 6.2 and Figure 6.3 are not rigorous fits), 

their results should agree with each other. 

2. Figure 6.5(b) and 4.4(a) show large discrepancy of universal kriging results 

even we use a priori correlation function. The discrepancy may be due to the 

different sampling methods, i.e., uniform sampling and random sampling. 
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Figure 6.1: Nyquist frequency, 7r/30, for sample 1 of 25 points 

3. Since many manufactured surfaces have pronounced lay and direction character 

(i.e., strong periodicity), the sampling period should avoid the surface period­

icity as noted by Ripley (1981). If we take this into account when we perform 

uniform sampling with small number of samples, the result should be bet­

ter (higher detectability and lower standard deviation) than random sampling, 

which has larger standard errors when a small number of samples is taken. 

4, The form errors estimated by both interpolation methods are equal or greater 

than those calculated by single points. (Note: However, this is not the case for 

exponential models used by universal kriging. The krigged surfaces lie within 

the 3D convex hull which agrees with the observation we made in Chapter 

4.) Therefore, if we use these optimal interpolation methods to estimate form 

errors, the type I error (reject the good part) should increase and type 11 error 

(accept a bad part) should decrease which is favorable especially when the part 
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will affect safety considerations in future use. 

5. Kriging provides a standard deviation for the predicted surface. Spline in­

terpolation also gives the error bound for the approximation, e.g., (5.10) and 

Kamada, et al. (1991). How to utilize this error information to characterize 

the mean and standard deviation of form error estimation for given number of 

uniform sampling points on general surfaces requires further study. 
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Figure 6.2: Histograms of deviations from minimum zone mean profiles 



www.manaraa.com

o 

lA 
O 

o 

e 

0 100 ISO 200 

o 

o 

e 
o 

9 

o 

0 ISO too 

o 

e 
o 

tn 9 

e 

0 50 150 100 200 

—4 

Figure 6.3: Correlograms obtained from 1000 points each surface 
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Figure 6.4: Correlograms of 100 and 25 points from bocll surface 
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(a) Cardinal series of Shannon Sampling in 3D, result of 100 sampling 
points taken from surface bocll, (b) Universal kriging result of the same 
sampling points. 

Figure 6.5: 



www.manaraa.com

sample 1 - 25 points 

o 
n 

o 

e 

2 3 4 5 1 
•ufac* 

sample 1 - 49 points 

o 

8 
e 

o 

2 3 4 5 1 
cufac* 

sample 1 -100 points 

CI 

o 

1 2 3 4 5 

•uftc* 

sample 2-25 points sample 3-25 points 

1 2  3 4 5 

•urftc* 

sample 2 49 points 

. \V —— tu* 
I k f M  

— — - tfiamon 
— — Wgr® 

sample 2 -100 points 

3 

cu(«c« 

3 

—— ^ p» 

- —- ihannon 
s —" — talgif>9 

e . 0 

e ' 

•uir*c« 

sample 3-49 points 

00 o 

sample 3-100 points 

Figure 6.6: Overall results 
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CHAPTER 7. CONCLUSIONS 

In a discussion at the 1993 International Forum on Dimensional Tolerancing and 

Metrology, the following points were made. 

In general, we see a point of diminishing returns, after which increasing the 

number of samples brings no advantage. However, we found that a plot 

of size vs. number of data points oscillates slightly as it converges, and 

certain numbers of samples lead to larger errors than adjacent numbers. 

(For example, 12 points might be worse than 11 or 13 points.) We don't 

know why this occurs, but it seems to be very repeatable for a given probe 

and machine, (p. 299) 

Our problem, as I see it, is the more points you take, the bigger the value 

of form error you get. So, we have a curve like this (trending upward as 

the number of points approached infinity. I don't know of any solid way 

of estimating, from somewhere here out to infinity, where that curve will 

go. (p. 301) 

Caskey et al. (1992) and Hocken (1993) also reported the similar problems. 

In this thesis we have presented a probabilistic viewpoint of the problem by deter­

mining the theoretical form error distributions for a wide variety of surfaces profiles 
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under various points of inspection. Our results concur with empirical evidence of 

others and indicate that current practices in the evaluation of form are insufficient 

in dealing with the variety of surface profiles that one encounters due to different 

manufacturing processes and materials. The role of the surface profile distribution 

must be understood before accurate estimates of form error can be obtained. 

Another issue raised in the curve fitting approach is the metric p selection for 

the fitting objective. From our studies, we have shown that the metric p selection 

does not appear to significantly affect the detectability. Sample size and the surface 

characteristics have the largest effect on detectability. 

Kriging is often considered as an optimal interpolation procedure in the sense of 

correctly modeling the spatial dependence. Identifying and fitting a correct variogram 

model (covariance function) from a small number of sample points can be a difficult 

if not impossible task. Due to the lack of complete computer software because of 

uncertainty in the variogram estimation and the computational complexity, kriging 

does not have a significant advantage in the estimation of form error. 

Finally, we applied the Shannon sampling theorem from communication engi­

neering and have shown that the surface profiles are band-limited signals. We have 

shown also that the Shannon sampling function is in fact an infinite degree of B-spline 

interpolation function and thus a best approximation for band-limited signals. Both 

Shannon sampling series and universal kriging using a priori correlation functions 

were applied to the flatness error estimation for uniform sample points measured 

from five common engineering surfaces. The result shows both methods perform 

similarly. The probability of over-estimating form error increases and the probability 

of accepting bad parts decreases using interpolation methods versus using the points 
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directly. 

Recommendations for further study 

Most of the algorithms used to calculate the form errors shown in Appendix A 

are based on a curve-fitting (ip-norm) approach. This approach can only obtain an 

approximate solution and possibly can not achieve global optimization. Deng (1993) 

gives criteria to achieve a global optimum for collected data in least squares fitting. 

More general conditions for general features is a subject of study. Hopp (1993) gives 

a start on the theory of testing metrology data analysis software. Several research 

issues still need to be addressed. The computational geometry approach to calculate 

the form errors is more difficult and computationally intensive but yields an exact 

solution for the sample points (but not exact with regard to form error). The solutions 

to many geometries are still unknown, e.g., finding the minimax approximating line 

(curve) of a set of points in 3-space. NURBS (NonUniform Rational B-Spline) curves 

and surfaces are commonly used in CAD systems. However, the inspection and 

analysis of these geometries has not been addressed. 

Voelcker (1993) comments on the future of metrology, "CMM-based coordinate 

metrology is severely data-limited at present, because data are expensive when col­

lected sequentially by moving machinery. It may be possible to finesse the currently 

vexing sample-set-sufficiency problem by moving to a data-rich environment based 

on wave phenomena rather than contact sensing. Thus the future of measurement 

per se is more likely to be paced by technology than theory." If the high speed data 

collection technology is reliable and available, the sampling strategies and sample 

data analysis techniques are another issue need to be addressed. 
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APPENDIX A. FORM ERROR EVALUATION PROGRAMS 

Table A.l: Form error evalution programs (I) 

Form error Method Program 

L2 
(linear deviation) 

straight.l2(file) 
(Splus Isfit function) 

^2 
(normal deviation) 

straight.nl2(file) 

(Solve 5D analytically) 

Straightness mlstraightnl2.c 
(MATLAB optimization toolbox: leastsq) 

Loo 
(normal deviation) 

straight .li (file,7/i ,7^2) 
(Osborne and Watson algorithm, 
see Gonin and Money (1989)) 

mlstraightli.c 
(MATLAB optimization toolbox: minimax) 

Convex hull straight.ch(file) 
(Splus chull function to obtain convex hull, 
schwidth.c to caluculate the minimum width 
of convex hull, 
algorithm see Houle and Toussaint (1988)) 
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Table A.2: Form error evalution programs (II) 

Form error Method Program 

L2 
(linear deviation) 

flat.l2(file) 
(Spins Isfit function) 

^2 
(normal deviation) 

flat .nl2 (file) 
(Spins ms function) 

Flatness mlflatnl2.c 
(MATLAB optimization toolbox: leastsq) 

Loo 
(normal deviation) 

flat.li(file,7/i,7?2,J/3) 
(Osborne and Watson algorithm, 
see Gonin and Money (1989)) 

mlflatli.c 
(MATLAB optimization toolbox: minimax) 

^2 
(normal deviation) 

cir.nl2(file) 
(Spins ms function) 

Circularity mlcirnl2.c 
(MATLAB optimization toolbox: leastsq) 

Loo 
(normal deviation) 

cir.li(file,7/i,7/2,7?3) 
(Osborne and Watson algorithm, 
see Gonin and Money (1989)) 

mlcirli.c 
(MATLAB optimization toolbox: minimax) 

Cylindricity Loo 
(linear deviation) 

cylindricity file 772 772 »?3 7/4 J?5 
(Osborne and Watson algorithm, 
see Gonin and Money (1989)) 
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APPENDIX B. RESULTS COMPARISON OF PUBLISHED DATA 

SETS 

1. Straightness y = 'q\+ri2X 

Data set 1 (Shunmugam (1986, 1987ab, 1990), Traband et al. (1989), Dhanish 

and Shunmugam (1991)) 

X -2 -1 0 1 2 
y 3 5 2 1 2 

Method V 2  Form error 
L2 (LD) 
L2 (ND) 
Loo (ND) 

2.6 
2.6 

2.500001 

-0.6 
-0.9355531 
-0.9999995 

2.8 
2.143676 
2.121321 

Note: LD=Linear Deviation; ND=Normal Deviation 

Data set 2 (Traband et al.(1989)) 

X 1 2 3 4 5 
y 2.428 2.891 3.445 2.931 3.895 
X 6 7 8 9 10 
y 4.196 4.497 4.662 4.545 4.303 

Method V9. Form error 
io (LD) 
L2 (ND) 
Loo (ND) 

2.4614 
2.445333 
2.456333 

0.2396182 
0.2425394 
0.2286667 

0.9128545 
0.8956511 
0.8578577 
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Data set 3 (Traband et al. (1989)) 

X y X y 
0.05 -0.066450 0.55 -0.095250 
0.10 -0.064380 0.60 -0.011540 
0.15 0.008761 0.65 -0.024060 
0.20 -0.011170 0.70 0.035150 
0.25 0.062370 0.75 -0.019970 
0.30 -0.038290 0.80 0.015400 
0.35 0.065500 0.85 -0.013240 
0.40 0.063570 0.90 -0.022250 
0.45 0.028490 0.95 0.077100 
0.50 -0.006113 1.00 -0.000360 

Method v\ V2 Form error 

L2 (LD) 
L2 (ND) 
Loo (ND) 

-0.01628805 
-0.01666975 

-0.023575 

0.02943136 
0.03015843 
0.01933333 

0.1666363 
0.1667059 
0.1645859 

Data set 4 (Traband et al. (1989)) 

X y X y 
0.3952 -0.0032 2.6001 0.0007 
0.6953 -0.0016 2.8590 0.0017 
0.9669 -0.0042 3.0662 0.0025 
1.2762 -0.0028 3.2165 -0.0017 
1.5797 -0.0037 3.4217 0.0026 
1.8593 -0.0007 3.6179 0.0027 
2.1333 -0.0010 3.8185 0.0047 
2.4197 0.0007 

Method m n2 Form error 
Lo (LD) 
L2 (ND) 
Loo (ND) 

-0.004953762 
-0.00495377 

-0.005595367 

0.002093011 
0.002093014 
0.002017162 

0.005376898 
0.005376895 
0.005185658 
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Data set 5 (Traband et al. (1989)) 

X y 

0.2845 -0.0034 
0.6600 -0.0032 
1.2041 -0.0030 
1.4994 -0.0035 
1.8494 -0.0036 
2.2261 -0.0025 
2.5724 -0.0028 
2.9076 -0.0026 
3.2548 -0.0031 
3.4142 -0.0031 
3.6307 -0.0029 
3.9237 -0.0029 
4.2647 -0.0028 
4.5112 -0.0028 
4.8150 -0.0027 
5.1334 -0.0027 
5.3603 -0.0030 
5.6534 -0.0032 
5.9058 -0.0020 
6.0774 -0.0019 
6.2962 -0.0019 
6.5240 -0.0019 
6.7114 -0.0017 
6.9996 -0.0019 
7.2076 -0.0017 

Method m V2 Form error 
Lo (LD) 
L2 (ND) 
Loo (ND) 

-0.003588502 
-0.003588502 
-0.003552695 

0.0002226964 
0.0002226964 
0.0001783604 

0.001463247 
0.001463247 
0.001311295 
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Flatness 2^ = t/j + ?/2 a:+»73 y 

Data set 1 (Shunmugam (1986, 1987ab, 1990), Traband et al. (1989), Dhanish 

and Shunmugam (1991)) 

X y z 

-2 1 5 
-1 1 4 
0 1 1 

1 1 2 
2 1 2 

-2 0 4 
-1 0 3 
0 0 3 
1 0 2 
2 0 2 

-2 -1 3 
-1 -1 4 
0 -1 2 
1 -1 1 

2 -1 2 

Method '/l V2 Form error 
Z,o (LD) 
Z,2 (ND) 
ioo (ND) 

2.666667 
2.666666 

2.50 

-0.6 
-0.729863 

-0.75 

0.2 
0.4289852 

-0.25 

2.8 
2.532129 
1.961161 

Minimum zone = 2.0000 (Traband et al., 1989) 
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Data set 2 (Murthy and Abdin (1980), Traband et al. (1989)) 

X y z 
0.00 0.00 2.00 
0.00 25.00 5.00 
0.00 50.00 6.00 
0.00 75.00 8.00 
0.00 100.00 9.00 

25.00 0.00 5.00 
25.00 25.00 7.00 
25.00 50.00 8.00 
25.00 75.00 9.00 
25.00 100.00 12.00 
50.00 0.00 6.00 
50.00 25.00 7.00 
50.00 50.00 8.00 
50.00 75.00 9.00 
50.00 100.00 11.00 
75.00 0.00 7.00 
75.00 25.00 7.00 
75.00 50.00 6.00 
75.00 75.00 7.00 
75.00 100.00 9.00 

100.00 0.00 7.00 
100.00 25.00 6.00 
100.00 50.00 6.00 
100.00 75.00 6.00 
100.00 100.00 8.00 

Method V2 Form error 
Lo (LD) 
L2 (ND) 
Loo (ND) 

5.16 
5.156904 

4.431818182 

0.00080 
0.0008011909 
0.001818182 

0.0408 
0.04086073 

0.050909091 

5.9 
5.888982 
4.857338 

Minimum zone = 6.2343 (Traband et al., 1989) 
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Data set 3 (Traband et al. (1989)) 

X y z 

0.20 0.20 -0.066450 
0.20 0.40 -0.064380 
0.20 0.60 0.008761 
0.20 0.80 -0.011170 
0.20 1.00 -0.062370 
0.40 0.20 -0.038290 
0.40 0.40 0.065500 
0.40 0.60 0.063570 
0.40 0.80 0.028490 
0.40 1.00 -0.006113 
0.60 0.20 -0.095250 
0.60 0.40 -0.011540 
0.60 0.60 -0.024060 
0.60 0.80 0.035150 
0.60 1.00 -0.019970 
0.80 0.20 0.015400 
0.80 0.40 -0.013240 
0.80 0.60 -0.022250 
0.80 0.80 0.077100 
0.80 1.00 -0.000360 
1.00 0.20 0.057730 
1.00 0.40 -0.056200 
1.00 0.60 0.092060 
1.00 0.80 0.065360 
1.00 1.00 -0.021210 

Method V} n Form error 
Lo (LD) 
h (ND) 
Loo (ND) 

-0.05526864 
-0.0567301 

-0.044235 

0.06101914 
0.06263704 

0.026200 

0.03084648 
0.03166436 

0.054200 

0.1667845 
0.1665349 
0.154870 

Minimum zone = 0.1756 (Traband et al., 1989) 
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Data set 4 (Traband et al. (1989)) 

X y z 
0.3846 0.2416 -0.0828 
1.5008 0.2922 -0.0821 
2.3107 0.3289 -0.0787 
2.9817 0.3593 -0.0789 
3.6964 0.3917 -0.0760 
3.6743 0.8794 -0.0785 
3.1195 0.8543 -0.0735 
2.3552 0.8196 -0.0745 
1.5875 0.7849 -0.0714 
0.5573 0.7382 -0.0740 
0.5413 1.0921 -0.0730 
1.2205 1.1229 -0.0727 
2.1673 1.1658 -0.0716 
3.0881 1.2076 -0.0749 
3.8459 1.2419 -0.0799 
3.8305 1.5796 -0.0848 
3.2057 1.5514 -0.0410 
2.4230 1.5159 -0.0759 
1.6710 1.4819 -0.0746 
0.5263 1.4300 -0.0745 

Method m V2 n Form error 

Z,2 (LD) 
h (ND) 
Loc (ND) 

-0.08152902 
-0.08153099 

-0.091755442 

-0.000073793 
-0.000073940 
-0.004399395 

0.007368128 
0.007370543 
0.028318718 

0.04396168 
0.04396046 
0.04183267 

Minimum zone = 0.04185 (Traband et al., 1989) 
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Data set 5 (Traband et al. (1989)) 

X y z 

0.2556 0.2994 0.0005 
1.4992 0.3371 0.0013 
2.6656 0.3726 0.0000 
3.5978 0.4009 0.0005 
4.6241 0.4321 -0.0007 
4.5989 1.2640 0.0001 
3.4451 1.2289 0.0008 
2.7096 1.2066 0.0004 
1.6726 1.2968 0.0014 
0.5273 1.2620 0.0009 
0.1683 2.1414 -0.0002 
0.9906 2.1663 0.0010 
2.5485 2.1801 0.0008 
3.4605 2.1369 0.0011 
4.8632 2.1795 -0.0017 
4.8401 2.9417 -0.0014 
3.6557 2.9058 0.0012 
2.4224 2.8683 0.0012 
1.3839 2.8368 0.0011 
0.4966 2.8098 -0.0002 
0.4672 3.7751 -0.0008 
1.6709 3.8116 0.0010 
2.8864 3.8486 0.0006 
3.7562 3.8750 0.0008 
4.6746 3.9029 -0.0003 

Method V2 Form error 
Lo (LD) 
^2 (ND) 
loo (ND) 

0.0009525604 
0.0009525606 
0.0002603628 

-0.000186619 
-0.000186619 
-0.000172624 

-0.000047496 
-0.000047496 
0.0000884590 

0.002709154 
0.002709154 
0.002627309 

Minimum zone = 0.002817 (Traband et al., 1989) 
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3. Circularity 

Data set 1: (Shunmugam (1986)) 

(1) rj = 7/1 + ??2 cos((t>i) + n 

<t>i n LS residuals L(X) residuals 
0 4 -0.8535534 -1.1213203 

45 4 -0.0428932 -0.2928932 
90 3 1.2071068 1.1213203 

135 5 -1.2500000 -1.1213203 
180 2 0.8535534 1.1213203 
225 3 -0.9571068 -0.7071068 
270 1 0.7928932 0.8786797 
315 2 0.2500000 0.1213203 

h 2.4571068 2.2426406 

3.0000000 3.0000000 

V2 0.1464466 -0.1213203 

V3 1.2071068 1.1213203 

The deviation is 2.2433 as reported in Roy, U. and Zhang, X., 1992, Estab­
lishment of a pair of concentric circles with the minimum radial separation 
for assessing roundness error. Computer Aided Design, Vol. 24, No. 3, pp. 
161-168. 

(2) {xi - 77I)2 + [Vi - 7?2)^ = rii 

X y LS residuals Loo residuals 
4.0000000 0.0000000 0.9495872 0.9264926 
2.8284271 2.8284271 0.0093216 0.1552449 
0.0000000 3.0000000 -1.4801608 -1.3168030 

-3.5355339 3.5355339 0.9645387 0.9264926 
-2.0000000 0.0000000 -0.9037659 -1.1985311 
-2.1213203 -2.1213203 0.7190288 0.3826191 

0.0000000 -1.0000000 -1.0113835 -1.3168030 
1.4142136 -1.4142136 -0.2387083 -0.4561400 

h 2.4446995 2.2432956 

n -0.0096779 -0.1279891 

V2 1.2343914 1.0000000 

n 3.2457959 3.3208941 
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Data set 2: 

(1) ri = T]i+ 7?2 cos{ ( j >i) + J73 

n LS residuals Z/cxD residuals 
0.000000 1.037000 -0.029637 -0.021569 

36.000000 0.992320 0.014865 0.021569 
72.000000 0.999941 0.002942 0.004700 

108.000000 0.994568 0.001534 -0.003348 
144.000000 0.985114 0.004318 -0.006361 
180.000000 0.992000 -0.006580 -0.019998 
216.000000 0.995113 -0.009514 -0.021569 
252.000000 0.989503 0.000397 -0.006711 
288.000000 0.974644 0.022038 0.021569 
324.000000 1.003715 -0.000364 0.004964 

h 0.051674946 0.04313782 

n\ 0.9963918 0.9937163 

V2 0.0109714 0.0217148 
0.0032601 0.0044310 

(2) + iVi - V2)^ = :7?2 

X y LS residuals Loo residuals 
1.0370 0.0000 0.0291323 0.0212738 0.021507 
0.8030 0.5830 -0.0152233 -0.0217392 -0.021507 
0.3090 0.9510 -0.0030227 -0.0046536 -0.004421 

-0.3070 0.9460 -0.0013594 0.0034576 0.003690 
-0.7970 0.5790 -0.0040147 0.0063303 0.006563 
-0.9920 0.0000 0.0068488 0.0197631 0.019996 
-0.8050 -0.5850 0.0096426 0.0212738 0.021507 
-0.3060 -0.9410 -0.0004620 0.0064981 0.006731 

0.3010 -0.9270 -0.0223191 -0.0217392 -0.021507 
0.8120 -0.5900 -0.0000984 -0,0052153 -0.004983 

h 0.0514514 0.0430131 0.0430131 

n 0.0113582 0.0217446 0.021745 

V2 0.0031419 0.0042836 .004284 

V3 0.9965143 0.9939906 .993785 
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Sphericity 

r i  =  V l +  n 2  c o s { ( l > i )  +  773 cos(^j) sin{(l>i) + 7^4 5m(^i) 

data set (Dhanish and Shunmugam (1991)) 

k n LS residuals Loo residuals 
0 90 5 1.65947 1.41418 
0 45 5 1.28600 0.58578 
0 0 4 0.39837 -0.41421 
0 -45 3 -0.06922 -0.58581 
0 -90 3 0.57134 0.58575 

45 45 3 -0.98648 -1.24265 
45 0 4 0.01304 -0.17158 
45 -45 2 -1.34170 -1.41424 
90 45 4 0.19766 0.41419 
90 0 3 -0.72655 -0.24268 
90 -45 4 0.84244 1.24261 

135 45 3 -0.26945 0.17155 
135 0 3 0.02706 0.82838 
135 -45 3 0.37533 0.99997 
180 45 1 -1.69996 -1.41420 
180 0 3 0.83243 1.41420 
180 -45 2 -0.05518 0.41421 
225 0 2 0.21781 0.17163 
225 -45 2 0.21733 0.24268 
225 -90 3 0.57139 0.58582 
270 45 2 -0.61156 -1.24255 
270 0 2 -0.04256 -0.75725 
270 -45 1 -0.96678 -1.41414 
315 45 3 -0.14444 -0.99993 
315 0 3 0.20385 -0.82832 
315 -45 2 -0.49966 -1.17151 

ht 3.359429 2.8284395 

3 
1.414214 
0.242641 
0.585786 

2.884574 
0.717052 
0.841958 
0.455935 
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5. Cylindricity 

r i  =  r j i +  T ] 2 C o s { ( l > i )  + r]^sin{(l)i) + cos{<^i) + 775 sin{(t>i) 

data set (Dhanish and Shunmugam (1991)) 

n LS residuals Loo residuals 
0 5 1.11485 0.95119 
0 4 0.43807 0.14645 
0 -1 3 -0.23871 -0.65829 

45 1 3 -1.01394 -0.79637 
45 4 0.17800 0.12622 
45 -1 4 0.36993 0.04882 
90 1 4 0.57324 0.95116 
90 3 -0.47854 -0.35358 
90 -1 3 -0.53032 -0.65831 

135 1 3 0.53243 0.75589 
135 3 0.26726 0.40233 
135 -1 2 -0.99790 -0.95122 
180 1 1 -0.69823 -0.85356 
180 3 0.97855 0.95116 
180 -1 3 0.65532 0.75589 
225 1 2 0.43061 -0.10596 
225 2 0.23866 -0.02857 
225 -1 1 -0.95329 -0.95118 
270 1 2 -0.15653 -0.85347 
270 2 -0.10477 -0.54874 
270 -1 2 -0.05300 -0.24402 
315 1 3 -0.11571 -0.65821 
315 0 3 0.14944 -0.30465 
315 -1 2 -0.58540 -0.95109 

h 2.12879 1.90241 

n 2.791674 2.951184 

V2 0.770257 0.902369 

V3 0.686848 0.402369 

u 0.32322 0.195262 
-0.051791 -0.304738 
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APPENDIX C. MACHINED SURFACES 

This appendix shows five perspective plots of machined surfaces. The man­

ufacturing processes are boring process, end milling process, fly cut process, fine 

grounding process, and shaping process. Data are from Atlas of Machined Surfaces 

(Stout, et al., 1990). We would like to thank Dr. Sullivan, P.J. for sending us these 

data. 
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Figure (M: Bored surface 
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Figure End milled surface 
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Figure CA: CJromul surface 
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Figure C.5: Shaped surface 
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APPENDIX D. SPECTRAL PLOTS 
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Figure D.l: Spectral plot for bored surface 
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Figure D.2: Spectral plot for end milled surface 
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Figure D.3: Spectral plot for fly cut surface 
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Figure D.4; Spectral plot for ground surface 
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Figure D.5: Spectral plot for shaped surface 
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